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A differential game in which the payoff functional is the time required for the phase point to reach the target set is considered. 
A construction of e-optimal strategies, similar to the standard construction when the value function is everywhere differentiable, 
is proposed. The difference is that the gradient of a non-smooth and discontinuous value function is replaced by a certain quasi- 
gradient. 

This paper continues the investigation of universal strategies in [1-4]. Certain facts from the theory of 
generalized solutions of first-order partial differential equations [577] and from non-smooth analysis 
[8] are used. The quasi-gradient of the value function is defined instead of the gradient in the standard 
construction of optimal strategies, which assumes that the value function is everywhere differentiable. 
An analogous construction for a differential game with fixed stopping time and continuous value function 
was considered in [9]. 

1. Let the motion of the controlled system be described by the equation 

Jc(t) = f ( x ( t ) ,  p(t),q(t)),  t >>- 0 (1.1) 

where x(t) e R n is the phase state of the system at time t, p(t)  e P and q(t) ~ Q are the controls of 
players I and II, respectively, and P C R' and Q c R m are compact sets. It is assumed that the function 
f(x, p,  q) is jointly continuous in its variables and satisfies a Lipschitz condition with respect to x 

II f ( x  + y, p,q) - f ( x ,  p,q)ll~ Z.II yll (1.2) 

for all (x, p, q) e / ~  x P x Q. It is also assumed that 

m i n m a x ( s , f ( x , p , q ) )  = m a x m i n ( s , f ( x , p , q ) ) =  H(x , s )  
p~P q~Q" . q~Q p~P~ - 

(1.3) 

for any s e /V'  and x e/V'.  
Let M C R n be a given set in phase space. Player I tries to ensure that the phase point x(t) will reach 

M in the least possible time. Player II, for his part, tries either to prevent the encounter with M or to 
maximize the time 1Io the encounter. Different versions of the rigorous formulation of these problems 
are known and the existence of a game equilibrium has been proved. In this paper we will use the 
formalization of positional differential games [10]. 

Positional strategies of players I and II are arbitrary functions 

R n ~ x v 4 U ( x ) e  P,  R n ~ x b o V ( x ) ~  Q 

respectively. Suppose that player I has chosen a certain strategy U and a partition 

A = { 0 = t 0 < t  l <  ...}, l i m t i = o o  
i--.¢~ 

If x0 e / ~  is a given point, the symbol X(xo, U, A) will denote the set of trajectories x(.): [0, oo) ~ / V '  
of the differential irLclusion 

Jc(t) • c o { f ( x ( t ) , U ( x ( t i ) ) , q ) :  q • Q} ,  t • [ t i , t i .  I ), t i • A ,  x (O)  = x o 
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Similarly, suppose that player II has chosen a strategy V and a partition A. The symbol X(x0, V, A) 
will denote the set of solutions of the differential inclusion 

k(t)  e co{ f (x ( t ) ,  p, V(x( t  i))): p ~ P}, t ~ [t i, ti+ I), t i ~ A, x(O) = x o 

Define a functional 

~ (x(.)):= minlt ~ R +:x(t) ¢ M t } 

If x(t) q~ M ~ for all t E R +, we define xe(x(.)) = **. Here  e is a positive number and M ~ is the e- 
neighbourhood of the set M, i.e. 

M~:= {x+y:x  e M, Ilyll<~ e} 

We shall use the notation 

diam(A): = sup(t/+ 1 - t t ) f o r  i = 0,1, 2 .... 

We know (see, for example, [10]) that for any initial position x0 e / ~  the game has a value Val (x0) 
[0, -0], i.e. the following conditions hold: 
1. for any numbers 0 < Val (x0) and e > 0, player I has a strategy U such that 

lim sup suplxe(x(.)):x(.) e X(xo,U,A)}  <~ 0 
diam ( A),I,0 

2. for any number 0 < Val (x0) a number e > 0 and a strategy V for player II exist such that 

lira inf inf{xc(x(.)):x(. ) E X(x  o, V,A)} ~ 0 
diam ( A)~,O 

The existence of the value has been proved [10] for a differential game in the class of strategies U (t, 
x), V (t, x), which depend on the variable t both in the case of the controlled system Jc = f(t ,  x ,p ,  q) and 
in the ease of a stationary system of type (1.1). The strategies considered in this paper will not depend 
on t. We also note that the strategies constructed below have a universality property: they guarantee 
e-optimal solutions from any initial position in a bounded domain. 

2. Consider the following boundary-value problem for the Isaaes-Bellman equations 

H(x, D u ( x ) ) + l = O ,  x e G  (2.1) 

~(x) = 0, x e aG (2.2) 

where H(x, s) is the Hamiltonian defined by (1.3); G = R~\M is an open domain, G is the closure of 
G and aG is the boundary of  G. 

We recall the following result [11]. Let ~: G ~-~ R + be a continuous function that satisfies the boundary 
condition (2.2), is continuously differentiable in G and satisfies Eq. (2.1) in that domain. Then the 
function a) is identical with the value of the differential game. 

Moreover, in that case optimal strategies Uo and Iio for the two players may be constructed as follows. 
We introduce extremal pre-strategies 

po(X,s) Argmi.rmax( ,f(x,p,q))l 
I, ePL ,1~(2 J 

(2.3) 

q o ( x , s ) ~ A r g m a x [ m i n ( s , f ( x , p , q ) ) ]  
q~Q L pep 1 

(2.4) 

We define the strategies U0 and V0 are superpositions of the pre-strategies and the gradient Do,  i.e. 

U0(x):= P0(x,D~(x)),  V0(x):= qo(x ,D~(x ) )  (2.5) 
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The assumption that the value function is smooth holds only in exceptionally rare cases. The value 
function may be discontinuous and may take the improper value +**. In the general case, however, as 
shown below, one can define e-optimal strategies by formulae of type (2.5), provided the gradient D~(x)  
is replaced by a certain quasi-gradient. In the construction proposed here, we will use results obtained 
[5, 7] for bounded solutions of Dirichlet-type problems for first-order partial differential equations. 

Consider the transformation [12] 

[0,o~] 3 "o~--)u(~)=l±e±~ ~[0,1] 

It is obvious that the function ~(x) satisfies (2.1) if and only if the function u(x) = 1 - exp (-v(x)) satisfies 
the equation 

H(x,  D u(x))  + 1 - u(x)  = 0 (2.6) 

It was shown in [7] that Eq. (2.6) has a generalized (minimax) solution u: G ~-~ [0, 1] satisfying the 
boundary condition 

u(x)  = O, x ~ ~G (2.7) 

and that solution is unique. The minimax solution u is lower semicontinuous and possesses the following 
property. 

Let 11 ~ G, q. e Q, x > 0. Let Y(rl, q.) be the set of trajectories y(.): [0, x] ~ R ~ of the differential 
inclusion 

y(t)  ~ co{ f (y ( t ) ,  p,q,):  p • P} (2.8) 

with initial condition y(0) = ~1. Assume that y(t)  ~ G for all y(.) ~ Y(rl, q.) and all t 6 [0, x]. Then a 
trajectoryy(.) e Y(~, q.) exists such that 

(u(rl) - l)e ~/> u(y(x))  - 1 (2.9) 

This property is equivalent to the u-stability condition for the function ~ [10] and to the definition of 
an upper solution of Eq. (2.6). 

Note that the value function is related to the minimax solution of problem (2.6), (2.7) by the equality 

V a l ( x ) = ± l n ( l ± u ( x ) ) ,  x ~ G  (2.10) 

Suboptimal strategies for the players may be defined as superpositions of pre-strategies and quasi- 
gradients of the minimax solution. As corollaries of these constructions one can demonstrate the 
existence of the value and prove equality (2.10). 

3. We will now describe the construction of an e-optimal strategy for player I. Let u be the minimax 
solution of problem (2.6), (2.7). Define 

u~ (x):= mi_n [u (y) + wa (x, y)] (3.1) 
)'(~G 

where 

= , v = ~  0 < a < m i n  (3.2) 
" ot 2 + 2 ~ , '  ' Z.(I + ~.)  

~. being the Lipschitz constant (see 1.2)). The function wa satisfies the inequality 

H(x ,  D x w~ (x, y)) - H ( y , -  Dy w a (x, y)) - w~ (x, y)  ~ 0 (3.3) 

for any (x,y) ~ G x G such that IIx-y II ~ 1. Functions of this type are used to prove uniqueness theorems 
in the theory of ge:aeralized solutions of first-order partial differential equations (see, for example, 
[7, 6]). 
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ya(x)  ~ Arg m~[u(y)  + wa(x, y)] 

Such a point exists because u is lower semicontinuous. 
It can be shown that 

Define 

u ~ ( x ) ~  u (x )+~ ,  IIx-y~(x)ll<~ 2or 

(3.4) 

(3.5) 

U a (x) = P0 (x, sa (x)) (3.6) 

wherep0 is the extremal pre-strategy defined by condition (2.3) 

sa (x): = (D x w~ )(x, ya(x))  = -(D~, w a )(x, ya(x)) (3.7) 

If u is continuously differentiable in the neighbourhood of a point x e G, it follows from (3.4) that 

D u(y a (x)) + (D~,w~)(x, Ya (x)) = 0 

By (3.7) and (3.5), we obtain sa(x) ---> Du(x) as tx ---> 0. We may therefore call sa(x) the quasi-gradient 
of u at x. Referring to (2.10), we see that U~(x) = po(x, sba(x)), where Sb(X) = Sa(X)(1 -- U(X)) -1 is the 
quasi-gradient of the value function Val (x) in the sense described above. 

Theorem 1. Let u: G ~ [0, 1] be the minimax solution of problem (2.6), (2.7). Let  D be a compact 
subset of G. Assume that 

0 ° = su~[- ln(1-  u(x))] < oo 

Then for any e > 0 one can choose a parameter  value ¢t > 0 so that, for any point x0 e D 

lim sup sup~x~ (x(.)): x(-) ~ X(x o, U~, A)} ~< - in(1 - u(x o)) + ~ (3.8) 
d iam ( A ) J , 0  " 

where Ua is a strategy of type (3.6). 

Proof. Let X(xo) denote the set of trajectories x(.): R ÷ ~ [0, 0o) of the differential inclusion 

Jc(t) ~ co{f(x(t) ,  p, q): p ~ P, q ~ Q} 

satisfying the initial condition x(0) = x0. Put 

K : = { x ( t ) ~ R " : x ( . ) e X ( x o ) ,  t ~ [ 0 , 0 ° + e ] ,  x o eD} 

m:=sup{ l l f ( x+h ,p ,q ) l l : xeK ,  p e P ,  q ~ Q ,  Ilhll~ <1} (3.9) 

Choose numbers ¢t > 0 and ~o > 0 so that 

3ix < e, 80m ~< or, 3a < 1 (3.10) 

Choose x 0 ~ D arbitrarily. 
We shall prove the following proposition. L e t x  (-) ~ X(xo, U~, A), ti e A, ti < 0 = -In(1 - U(Xo)) + e 

and let dist(x(ti); M) > 3o~. Then for any x ~ [ti, ti+l] A [0, 0] 

ua(x( '0)  ~< 1 -[1 - %(x(ti))]e ~-ti +(x - ti)e~-'ih(~,~) (3.11) 

where 8 = diam(A), lirna-_>0 lin~__~o h(ct, 5) = 0. The quantity h(tx, 5) depends only on t~ and ~ but not 
on the choice of the point x 0 ~ D and the trajectory x(.) ~ X(xo, U~, A). 
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In  addit ion to  (13.10), we assume that  the p a r a m e t e r s  a and ~ have  been  chosen in such a way tha t  
the  following es t imate  holds 

e°[a + Oh(a, ~)] < e c -  1 (3.12) 

Suppose  tha t  these es t imates  hold. Given  x(.) e X(x0, Ua, A), let us consider  two cases: (1) a t ime 
ti ~ A exists such that  ti < 0 and dist (x(ti); M )  <~ 3a;  (2) the inverse inequali ty dist (x(ti); M )  <~ 3 a  holds 
for  all t i e  A that  satisfy the es t imate  ti < O. 

Since 3 a  ~< e, it follows that  in case 1 

X~ (x( . ))  <~ t i ~< 0 = - ln(l - u(x  o)) + (3.13) 

Now consider  case 2. T h e  recur ren t  es t imates  (3.11) yield 

u s (x(0))  ~< 1 - [1 - u a (x  o)]e ° + Oe°h(a,  8) 

Note  tha t  e ° = ee(l - U(Xo)) -1. By (3.5), ua(xo) <- U(Xo) + a.  Consequent ly  

ua (x(0))  <~ 1 - e ~ + e ° [ a  + Oh(a, fi)] < 0 

The  last inequali ty follows f rom (3.12). Thus,  in case 2 we have der ived the inequali ty ua (x(0)) < 0. 
On the o the r  hand,  by (3.1) we have ua (x(0)) I> 0. This  contradict ion proves  that  case 2 is impossible.  

Thus,  if the estinaate (3.11) is t rue,  the s t rategy Ua satisfies the es t imate  (3.8). H e n c e  the p r o o f  of  
the t h e o r e m  reduces  to verifying (3.11). 

Let us introduce the notation 

~=x(t i ) ,  r l=ya(~) ,  s. =sa(~),  p* =Ua(~)=po(~ , s , ) ,  q. =q0(rl,s.)  (3.14) 

(recall thatp0 and q0 are the pre-strategies defined by (2.3) and (2.4)). Since the functions f(x, p, q) and Us(x) are 
independent of t, we may put ti = 0. Define a vector 

f ,  x ( x ) - ~  I x = = -fJc(t)dt ,  Jc(t) ~ co{ f (x ( t ) ,p  ,q):q ~ Q} 
"t "[0 

(3.15) 

It is required to prove the inequality 

1 - u a (~) ~ e-X[l - Uct (~ + f ' x ) ]  + xh(O~,'~) (3.16) 

It follows from the inequality dist (~; M) > 3a  and the second estimate in (3.5) that dist (~, M) > a. We recall 
that flora ~< a. It follows from this estimate and the definition of m (3.9) that y(t) ft M for any trajectory of the 
differential inclusion (2.8) and any t e [0, x]. It follows from (2.9) that 

1 - u( 'q)  <~ e - X [ l  - u ( r  I + f , x ) ]  (3.17) 

where 

' t  

f .  = y ( x ) -  rl = l ~,,(t)dt, y(t) e co{ f (y( t ) ,p ,q . ) :p  ~ P} (3.18) 

We recall that 11 = Ya(g), so that (3.1) and (3.4) give ua(~) = u0q ) + wa(~, rl). Combining this estimate with 
(3.17), we obtain 

1 - u s  ( ~ )  ~< e -  ~ [1 - u ( ~  + f , x ) l -  w ~  (~,  rl) 

Let us add and subtract the expression e-*wa(~ + f ' x ,  "q + f .x)  on the right of this inequality. By definition (3.1), 
we have 

ua(¢ + f*Z)<~u('q+ f , x )+Wa(~  + f*z, 'q+ f . z )  

ConsequentO 
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l-ua(~)<~e-X[I-ua(~ + f ' x ) l+ A a 

A~ = e -xw a (~ + f'x,11 + f . x ) -  wa (~,rl) (3.19) 

Let us estimate ~t. The function wa is continuously differentiable. By 0.7)  and (3.14) we have s. = Dx wa(~, "q) = 
-Dywa(~, 11). Therefore 

A .  <~e- '[wa(~:1)+(s. , f*)x-(s . , f . ) ,]-wa(~,rl)+hi(a,x)x<~ 

where, as below, hi(a, x) ~ 0 as x ~ 0. These quantities depend only on x but not on the specific motion x(.) 
X(xo, v~, a ). 

It follows from (2.3) and (3.14) that 

(s. , f)<~H(~,s,)  Vf  ~co{f(~,p*,q):q~Q} 

Consequently, we have the following inequality for the vector f" of (3.15) 

Similarly, it follows from (2.4), (3.14) and (3.18) that 

(s . , f . )  ~ H(q,s. ) -  h4(ct,x) 

The estimates just established yield 

A~ ~< [H(~, s. ) -  H(rl, s, ) - w(x (~,r I) + h.s Cot, x)lx 

Using (3.3), we get 

Aa <-hs(ot, x)x 

Substituting this inequality into (3.19), we obtain the required estimate (3.16), where h(oq x) = hs(a, x), 
lima._~0 lir~__~0 h 5 (ct, x) = 0. It is obvious from the above estimates that the quantity h5 may be defined so that it 
does not depend on the choice of x(.) ~ X(xo, Ua, A). 

This completes the proof of the theorem. 

4. T h e r e  is an analogous construct ion of  an e-optimal strategy for  player  II. Suppose we are given 
an initial point  x0 e G and a number  0 < -In(1 - U(Xo)). As  before,  u is the minimax solution of  p rob lem 
(2.6), (2.7). It  follows f rom the definition of  this solution [5, 7] that  a sequence of  lower solutions 
uk exists such that  0 ~< uk(xo) ~ U(Xo) ~ 1 and limk__~ Uk(Xo) = U(Xo). One  can there fore  choose  a lower 
solut ion u ,  such that  

0 < - In(I - u. (x0)) 

The  funct ion u.  is upper  semicontinuous and possesses the following property:  for  any 11 e G, p .  
P and x > 0, a t ra jectoryy( . ) :  [0, x] ~ / ~  of  the differential inclusion 

~'(t) ~ co l f ( y ( t ) , p . , q ) :q  ~ Q} 

exists which satisfies the initial condit ion y(0) = "q, such that 

(u("q)- I)e r <~ u(y( '¢))-  1 

Put 

ua. (x)::ma~G[u.(y)-wa(x,y) ] 

where  the funct ion wa is defined, as before ,  by (3.2). Choose a point  
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ya (x) ~ Arg ma~[u, (y) - wa (x, y)] 

We define a strategy V~: G ~ Q for player II by 

Va (x)  = q0 (x, s a (x))  

s a (x): = - ( D ~ w  a )(x, ya  (x))  = ( D y w  a )(x, ya  (x))  

where q0 is a pre-strategy of type (2.4). The following proposition is true for the strategies Va. 

Theorem 2. Given an initial point x0 e G and starting time 0 < -In(1 - u(x0)), one can choose 
parameters cx > 0 and e > 0 so that the following estimate holds 

lim inf inf{x~(x()):x(.) e X(x 0, Va,A)}/> 0 
diam (A),I,O 

The proof is basically the same as that of Theorem 1. 
Note that we have derived an estimate for the guaranteed result with the initial point fixed. The 

construction of Vc, may be adjusted in such a way that the estimate will hold for all pointsx0 in a given 
compact set D. 

Theorems 1 and 2 imply Eq. (2.10). If a sufficiently small parameter ct is chosen, the strategies Ua 
and 1I, guarantee players I and II results that are as close to optimal as desired. 

The research reported here was carried out with the financial support of the Russian Foundation for 
Basic Research (93-011-16032) and the International Science Foundation (NME000). 
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